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The equilibrium of a symmetrically loaded, thin walled spherical shell Is 
considered. A study is made of the asymptotic behavior of the solution as 
the relative thickness of the shell tends to zero. An asymptotic expan- 
sion has been establlshei which estimates the error in the technical theory 
and enables one to derive more exact theories. Use is made of the method of 
homogeneous solutlons, 
111. 

which In the case of spherical shells la due to Lur’e 

1, In order to construct homogeneous solutions for the spherical band 

(P1g.l) we write the equilibrium ec ?atlons In the theory of elastlclty in 

the system of coordinates r , a , F: 

sinh u 
- - U,,J 

r 

(1.2) 

Fig. 1 Fig. 2 
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The displacements u,. end u. will be sought with the aid of the follow- 

ing relation8 

u, = a (7’) m (u), 
dm (3) 

uiL = b (~)cosha-j-, 
d”rn 

msh’ a da2 = p3m (W 

The parameter v In (1.3) Is determined from the boundary conditions on 

the spherical parta ra of the boundaries of the band (Flg.2). 

Substituting (1.2) Into (1.1) and taking account of (1.3), it la.found 

that a and b are governed by a aystem of two differential equations 

The system (1.4) is of the Euler type, and the general 8olutlon Is easily 
written down 

1 

1 

tt1 tt3 

fx (PI = -4 (1 - Zv) [(@ - 4t - 5) + 8v (t + i)] [r T c1+ r- -i- Cal + 

i-l t-3 -- 

+[(tz+4t-5)-8v(t-l)][r .z CsfrTC4] I (1.5) 

b (r) = - 2 (1 i 2vj 1 

i+1 1+3 - -- 
[(t + 9) - 8vJ r ’ Cl - [(t - 5) + 8v] r 2 cz- 

t-1 f-3 -- 

- [(t - 9) + 8v] r ’ Cs+[(t+5)-8v]rTCp 1 (t= 1/i--4~~) 

By using (1.5)) It Is eaay to find the formulas for I’,... I’d, &I ur~ ua~ us 

I 
Ur=-4(1-2v) i 

1+1 t-t3 
[(t2 -4t - 5) + 8v (t + I)][r” Cl + r 

-- 

2 c21 + 

t-1 f-3 -- 

+ [(t2 + 4t - 5) - SV (t - i)] [r ’ C3 + rT C41 m (a) i 

1 
1 

t41 f+3 

ua =-. - 
L (1 - 2v) [(t + 9) - 8~1 r aC1-_[tt.-5)+8v]r-‘LC2- 

(1.6) 

f-1 f-3 -- 

- [(t - 9) + 8v] r 2 Cs+ [(t f5) -8v]rTC1 I 
dm (4 

cowhand 

E 
t-1 t+5 -- 

z fv. = - 4 (1 + v)l(l _ 2v) 1 [(t2 -i- 2t - 7) + 8vlr a Cl + (t + 3) [(t - 5) + 8vl r a c2 + 

t+1 t-5 -- 
+I(@--2t---7)+8v]r ’ &+(t-3)[(t+5)-8v]raCd (1.7) 

E t-1 

0, = - 8 (1 + v) (1 - 2v) 1 I(t+i)[(t2-4t-5)-8v]r a C1- 

t+5 -- 

- (t2 + 4t + 3) [(t - 5) + 8v] r ’ Cg - 
t+r f-5 -- 

- (t - 1) [(t” + 4t a - 5) 8v]r Cs+(P-4t+3)[(1+5)-8v]taC, - m(b) 
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E / t-1 

‘a = -8 (1 + v) (1 - 2~) \ct + 1) [(t2 -+ Gt + 1) --t- 8v] P ~c,+(t+1)2X 

t+5 t+l -- -- 

x [(-t + 5) - 8~1 r a C~-(t-l)~(t2-Gt+1)+8~] r ‘J C3+(t-1)2X 

i-5 t-1 
x [(t + 5) - 8y] rT C,,) 1~2 (CT) - “(I(t -‘r 9) - BY] rT Cl - [(t - 5) f 8~1 r 

1+5 -- 
2 cz - 

It-1 -- ‘-j\ 

- [(t - 9) f 8~1 r 1 C3+[(t+5)-8~1 r 2 C4/sinh2a ‘ii” (1.8) 

E 

% = 4 (1 + Y) (1 - 2V) {<(l + 1) [(-t I- 5) + /1Yf] / ’ r “’ Cl + (t + 1) x 

f-15 t+1 --. 

x I(-t+5)-8v]rdTCT-(t--1)[(t+5)-4vZ] r ’ Cs--- 

f-5 

- (t - 1) [(t + 5) - BY] r3 C,> 1)~ (a) + 
I t-1 t+5 1+1 -- -- 

+( [(t+9)-8v]r 2 C,-[(t-5)+8v]r ’ G-[(t-Q)+Sv]r ’ Csi- 

t-6 \ 
-+ [(t + 5) - Sv] rT Cp/dnh2c1 qj 

The quantities C, are determined by the homogenelty condition, In view 
of which we have 

t-1 t+5 

0, lea 
= -(t + 1) [(P - 4t-5) - 8v] a2 Cl + (ta + 4t + 3) [(t - 5) + 8vla 

-- 
a Gz+ 

t+1 f-6 __ I 

+ (t - 1) [(t” + 4t - 5) - 8v] a 2 C,-(t2-4t+3)[(t+5)-8v] a%q=O 

t-1 t+5 

r,, Irso = i(t2 + 2t - 7) + 8vJaa 4 + (t + 3) [(t - 5) + 8v] a 
-- 

a Ca ?$ 

t+r t-s -- 

+ IV2 - 2t - 7) f 8v] a 2 +(t-3)[(t+5)-8v]a%b=O 

t-1 1+5 - -- 

br /r-b 
=-(t+i)[(ta-4t-5)-8v] b ’ Cr+(t2+4t+3)I(t--)t8vl b ’ Czf 

t+1 f-6 

-i- (t* I) [(P d_ 4t - 5) - 8vjia Cs -((t2-4t+3)[(t+5)-8v] b2Cd =o 

t-1 t+6 
T~&=~ = [(ta + 2t - 7) + 8v] ba Cl + (t + 3) [(t - 5) + 8v] b 

-- 
2 c,+ (1 .w 

t+1 t-6 
+ [(P - 2t -7)+8v]b-%s+(t - 3) [(t + 5) - $v] bT Cd = 0 

setting the determinant of system (1.9) equal to zero, we obtain the fol- 
lowing equation for p - *t : 

Equation (1.10) was first derived In cl]. 
found to be 

From system (1.9) the CI are 
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t+11 . ..--.-2 

Cl = 2 (t2 - 9) [(rz - “5) ;t 80~ - 64v”] a 2 {[tJ - 7t + S] X-3 - 

- [(ES - 2t2 - 7t) +- 8vt] h-5 - 2 I(‘” + 3) - 4vt1 ?%-ff+3)) 
t-7 

ca = 2 (t - 3) [(t + 5) -- Sv] nT {[(C - 10t3 + 73t) - 64&l A-‘- 

-(r~-7t~6)[(t~+~t-7)~8~]~-3$.:!~(t~-2~3-4t~-6t-22f)f 

+ 4v (t* - 7t Ji 6) + 3”vV] A’+) (1.11) 
t-11 

Cs=2(P-9)[(ts--25)+80v--6W]a a (--[P-77t--6]h-3+ 

+ [(t” + 2tz - 76) + 8~21 h-J - 2 [(t2 $3j t W] 5*? 
f+7 

Cb = - 2 (t + 3) [ft - 5) f 8v] CZ- T f@s - 1OP $73t) - 64v%] A-’ - 
- (P - 7t - 6) [(F - 2t - 7) + Sv] k-3 - 2 [(t” +2t* - 4P + 6t - 21) - 

- 4v (t3 - 7t- 6) - 32&] K~-(‘+‘)) 

Equation (1,lO) can be transformed into 8 form more oonvenient far further 
inveetlgtttionz 

a. In this aectlon we will study the roots of Equation (1.12). Firat, 
by direct eubstitution one can VerlPy that (1.12) ha8 the three real roots 

$mO and fi-il, Then It la not dlffioult to establish that it hall no 
further real roots. Xn faot, when 6 B 0 the function (sinh ye/# sLnh y )’ 
la monotonoueIy increasing, and f(e) is monotonously decreasing, Conee- 
quentIy, when 8 > 0 there can be at meet one intersection of their two 
graphs. Thie Point 113 B - 1 . From the evenneas of Equation (1.12), it 
follows that the above assertion is correct, 

Now let e&(y) be znarb2traryoomplex root of Equation 
provsthat By-+- aa y-0. 

First we note that the complex root B,, aannot tend to 
In fact, if thla were 80, we would obviously have 

(1.12) l We wfll 

zero as y - 0 . 

Thus, Y’. :M choose a eequenco & which tends to the finite limit & 
ae y-0. Then, houever, it followe by virtue of (1.12) that f @‘O’) = 1, 
as y-0, which in turn implies that tf(‘) = c 1. We will prove that this 
is ale0 1mposeSble. Xnfact, when ~40 and (p(“))2 -c 1 we have 

From (2.1) we obtaln 

Caneelling the factor (jP- 1) in f2.2) and letting y tend to zero, we 



obtain a aontrrdlatlon. Thus me have proved that Br -a a8 y 4 0 . 

Now we examine in what way ~~ bcaomes lnflnite aa y - 0 . Let us oon- 

older the expreeelon ypr , An y 4 0 there are three poselble oases 

1) $k A con& < 00; 2) $k - 0; 3) $k + 00 

We will show that the third oa6e leads to a contradiction. Since fik’ - 
&s y-0, then Y(B,) - 1 . It then follows from (1.12) that we must have 

einh*ye, - (ye, I*, whloh is Impossible for continuous variation of y@, . 

Now we will oonaider the first case. We will denote the finite limit to 
uhloh y@, tends a6 y 4 0 by m!:‘. Then It Is easy to see from (1.12) 
that m!!’ 1 satisfies Equation 

sinh2 n?,(K) - (n_Jk’)” = 0 (2.3) 

and B,-+ - like 77~~ (k) / y. It la important to note that Equation (2.3) Is 

aotually Identical with the equation that determines the exponents In the 

Saint-Venant boundary effects In the theory of plates 12 and 31. Equation 

(2.3) ha8 a denumereble eet of roots, therefore, It follows that Equation 

(1.12) has also denumerable eet of roots, such as ~6~4 conet . It la easy 

to refine the value of the above root6 by wing the expansion 

and 

m-l(k) 

Pk = 7 + ml(k)y + mJk)y3 + . . . (2.4) 

1 12 (1 - Y”) - (rrQ))2 
)n,lw zzz - -~ 

Y sinh2m_1(k) - 2+W 

etc 

’ 

Now we take up the study of the roots ln the second group, for which 

yak+0 as y-0. Let us denote YB, by x1 . Equation (1.12) can then 

be represented In the form 

F (xfi, r) = +kh2 zk [zk4 + xk2 (“12 - 49) r2 + ‘/I@ 7’1 - 

-Si,d r5k2 [$ - 5/@k2r2 -j- (73/1‘j - 4Y2) y”] = 0 (2.5) 

When zt and y are small, function F(sk, y) can be expanded In a Power 

series 80 that Equation (2.5) becomes 

[xk’ + 2/&ks + l/K,&C1o + '/4,26xk =+.. .] + 3 [4(1 --v~)x~~ -i- (2.6) 

+ ‘/,j (1 - th’) xk4 + l/g6 (3 - 8Y2) xk6 + l/S30 (3 - 8+) cck8 + 

+ '/28350~k10 + . * .] r2 - 3 l4 (I -+) - 4g/43xk2 + '/3@k4 - 1/660xk6 - 

--I/~s~,,@ks + , . .] r4 - [(73/1s- 4+) --/3xk2 + '/31ti2k4 + ' * '] ? - 

- 3 [2/4g(73/16 - 4Y2) - 1/~2&~2 + 1/hi1,6xk4 -/- . . -1 r* + * * l = ’ 

If follows from (2.6) that 

zk = ~(k-)~‘iz + u,(k)ya/~ + aJk)r”le + . . , 
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aatkj _ 
- 

_K+27-4&W-106fW 

22400 (u-l(k))3 
- etc. w3) 

It Is clear from (2.8) that the second group contains four roots. 

The above analysis shows that the characteristic Equation (1,12) has 

three groups of roote: 
1. Roots Independent of y , namely, g-0, g=*1. 

2. Four roots that lncreaas 311ke y -* as y--O. 

3. A denumerable set of roota that increase like l/y as y - 0 . 

Now wet will analyze the etates of stress and strain corresponding to 

taoh of these groups of roots. 

Plrat group . For the root B - 0 we have 

Substituting (3 -1) into the boundary conditions CFP = ‘Cra = 0 when 

f = CI, b, we obtain a system of four equations for the determination of C,. 

The calculations show that C,= CT,= CT,- Cr= 0 . 

For the roots @ = $: 1 , we have 

a (r) = 3(3-8v)[raw1 + r-‘K,] - (7--8v)[r-‘f2 C, + r-‘19 In r C,] 

b (r) = -2 ((i1-8~)r~~‘s/2 C, + (3-th)r-Wz d_ (7--8v)r’1% C3 $ 
-i_ [2 j- (7--8v) fn t] r-*:* C,) (3.2) 

The analogous calculations to those in the preceding case yield c,- 0s’ 

= c,= C*= 0 . 

Thus, the roots of the first group determine 

a state of stress that vanishes identically. 

Second group * The equation for 

the determination of mI(a) in this case has the 

form 
wsh2a d% f’ da2 = pzm (3.3) 

where, In view of (1.5), (1.10) and (2.7), ~1 
has the expansion 

p=“$-i{~+“u-Q -1 

-1% 
ff+ . ..} (3.4) 

The solution of Equation (3.3) can, In general, be written In terms of 
Legendre functions. Rowever, for the following it is more convenient to 
make use of an approximate method, Moreover, it prove6 to be expedient to 
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consider the following two cases separately: 

1) The shell does not contain either of the poles 6 = 0, n; 

2) The shell contains at least one of these poles. 

In the first case the approximate Integration is conveniently carried 

out using the asymptotic method that has been explained in detail in Cl]. 

Here we merely quote the final result 

m (2!) = exp tan-~ (sira) +; i + 1/2 cosha + (3.5) 

_1_ 2 
8cz-1 

tan-~ (em) (8 a-1 al - l)i _(%p +a +qy] J/y+. . .} 

It followa from (3.5) that, for sufficiently small y , the quantity mb) 

has the character of a boundary effect that varies as an exponental function 

with the index y -a. Thus, the second group of roots determines a boundary 

effect having the typical rate of decrease familiar In the technical theory 

of plates. 

Now we will consider the second case (Flg.3). Here the usual asymptotic 

method of Integration cannot give an adequate approximate solution lrreepec- 

tive of the relative thickness y of the shell. The fact Is that the asymp- 

totic approximation loses accuracy in the vicinity of the pole 6 = 0. 

We note that in the present case it is necessary to select from the solutions 

of Equation (3.3) only those solutions that remain bounded when fi = 0. 

There are two such solutions. These Bolutlons were actually constructed In 

111, where one will also find an approximate method for calculating them. 

We will simply quote the final result. We will denote the solution equal to 

1 when 6 =: 0, by m (COsfi). 

For small values of 6 we have 

m (co&+) = JO @kti) + [l/46 J&S+) - ‘/NJ, (flk6)b2 + . . . (3.6) 

In connection with Formula (3.6), one Important feature should be noted. 
In the present case when y Is small 

Fig. 4 

6 = 0 (a = oo) (Fig.4). 

we have something like an Inner bound- 

ary effect in the vicinity of the pole 

For the rOOtB of the second group, the formulas for the calculation of 
the stresses and displacements, when represented as power series in y , 
have the following form 
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(3.7 ) 

1 Ip) = - : * _ zv i 

1 
2a-l2 (1 - v) ,,/r --+(I - v?) j:! + v [n-l* (1 - v) + I2 (1 - v2)J 5 - 

11 -7a.12)-~v(iGa_~a~ -42 

1 

_ 8a..l’) - 3” (4(i+ fg) +-4y> l.q+...}m 

ua 
(0) - ~ 

-- l-2v {[a-P (1 -v)C-221 -vy 1q+...+m & (3.8) 

2c dm 
f (0) = 

rci -_ a-1 (3 (1 - v2) (5’ 1 
- 1) jq-/- . ..)coshr Jg (3.9) 

0 (0) 
2G 

r = 1 a-1 (3 (1 - v2) (5” - 1) [l/G p%z_l” - (1 + v)] v/r-t . ..I 1’1 (3.10) 

(0) = - 2G 6 
OL 

- a-1 {[12(1 - v2) 5 + -I-...] nt + 
1 -2v 

+ ([a_lyi -v)C-2(1-I $)I ,,“Y) C!gz C!} (3.41) 

2G c 
9 
(0) = _ --2y (I-1 

1 1 
([Q (1 - v”) 135 - 2a_12 (1 - Y&= 

1 r + 
. ..> 117. - 

--_([a_?(1 --)5-2u 
_ +)I J/r‘+ ) ainh2a d”QL ~- . . . 2 du] 

(3.12) 

where 6 is the current coordinate measured from the middle surface 

r = l/z a [(I - 5) + (1 t- 6) eYl (--1<‘5<1) (3.13) 

In order to get a picture of the state of stress corresponding to the pre- 

sent group of roots we calculate the resultant force and moment of the 

stresses acting on the cross-section c = const On the basis of (l.l2),it 
is easily verified that 

b 

P = s (6a--& + T,,tsnbaj rdr = 0 
a 

b 

Thus the state of stress for this group has a resultant with zero compo- 

nent along the synnmetry axis, and the resultant moment on elements of area 
In the cross-section a - const has order of smallness y . 

Third group of roots . The equation for the determl- 
nation of m(a) still has the form (3.3), but ~1 is given by Formula 

P=m-lI 

8m_,m, - 1 
711-k Brn 

2 
r* + . . . 

i 
(3.14) 

Everything that has been said about the Integration of equation (3.3) for 

the roots of the second. group applies in the case of the third group of 
roots. In the present case 

m (u) = exp { tan-l (sic&CL) + i + $&a + 

+“[ -4 

f3Kl 
(sinbu) (8m-lm - l)-(ti++a+u$)]r+...} (3.15) 
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It is evident from (3.15) that, for sufficiently small y , the function 

m(u) also has the character of a boundary effect varying as an exponential 

function with Index l/y . This fact distinguishes the Saint-Venant bound- 
ary effect from the boundary effect in the technical theory of shells. 

In the present case the stresses and displacements can also be represented 
in the form of a series expansion in powers of Y , Below, In the first 
approximation, we will write out separately the expansions for 8* which 
degenerate as v - 0 into the roots of the equations slnh &,- 2mk= 0 and 
into the roots of the equation slnh 26,+ 26,- 0 I They have the following 
form 

For the first case 

4G 
___ a-1 

cash wk 
__- 

I-2v Ok 
-shhWk SinhW& -+ &oshw~coshWk c (3.20) 

%k --- _ (“) .-- & ~-%,Sh~&,h~k~Wk :_ m (3.21) 

For the second case 

*cd = 
%k &’ { [ 2 (1 - V)Siddk + 6kcOSh6kbh6,&, - &&h6pSh&k~) ??I (3.22) 

It is clear that In the first case ur Is an even function of 6 , and 
4 Is odd, which corresponds to a predominant flexure in the shell. In the 

second case the solutions correspond to a predominance of membrane stressing. 
It fs important to note that as v - 0 the boundary effects caused by the 
present group of roots go over exactly into the Saint-Venant boundary effect 
in the theory of plates. 

Now we will calculate the resultant force and moment of the stresses act- 

ing on the cross-section c = const . ‘In view of (1.12) we find the result- 

ant force has no component along the symmetry axis and that the resultant 

moment on the elements of surface have the order of smallness y2, namely 
b 

Al = 
i 

aar2dr - ((1 -wsh~._l) [sinh77L1- 172._1] p + . . .}[4m (a) -qQ d%] 
la 

The present system of stresses can be assumed equlvalent to ze1 With 8 
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degree of accuracy ya . Thus, the homogeneous solutions defined by the 
roots of the second and third groups can be used to balance the stresees 

arising in a shell under the action of a self-equlllbratlng ayatem of forces 

applied to the surfaces Q - const . When the transverse edges of the shell 

are subjected to forces whoee resultant ha0 a noneero component along the 

symmetry axis, etreeses are produced that penetrate Into the body of the 

shell without decaying. These streeses can be balanced by using the solution 

of the problem of the tension of a shell by aonaentrated forces applied at 

the poles 6 = 0 and 6 = n c4 and 53. 

4. Let UB consider the derivation of approximate theories Intended for 

taking a8re of strerrsee on the epherlcal part8 of the boundary. The oharaa- 
terlstlc feature of this approaoh conalata in the fast that the corresponding 

equationa of the approximate theory are conatruated’by an lndlvldual method 

aecrording to the quantity to be coneldered. We will Illustrate the aonetruo- 

tion of such a theory for the determination of the diaplaaements u, and u. 

of the points of the middle eurface. 

We will consider the case when the apherlaal part of the boundary la eub- 

jtcted to tractions of the form 

cl, = Ka P, (a), 
dPn zi, = Ldpaba -&- for r=b 

where P, satlsflea the Legtndre equation 

(44 

14.2) 
In the cast of a closed spherical ahell the dlaplaatmenta are 

(na-n-2)+4v(n+2) rni-~ 

4u --)(2n+3) 
c 

1 
+ (na+3nJ-44vn r”C + 

4(1-v)(2r,-i) a 

+ r-d-c3 - (n + 1) r-(n+2vp 
> 

P, 

&_w+v) _ 1 (n + 5) - 4v 
E 4 (1 -v) (2n + 3) p n+‘cl + 4 ,:“-- ;)(2,4yi, 

V 
r-% + 

+ rnw1C3 + r++2) C4 1 colba ‘2 
The quantities C, are found from the boundary condltlona (4.1) 

Ci = Ai / A 

(4.3) 

(4.5) 
Let ua expand all the determinants A and A, in series of powers of 

Q - drO , where F, ie the radlua of the middle surface of the shell and 
2h Is Its thichees. One finds 
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A~(~-~*)e2+~/g{[(nz$-r~)-~1]2-vz[4(~z~~~-~~) {-I]~E~ f-... (4.6) 

-I- {(KS + Kl) [(2n + 3) - v (n + 3)] - (Lz -I- LI) n [ ( 122 $m 2/L - 1) - Y (n -1. 3)]} &2 + 

f Vll ma - K2) [(5n3 + 8n2 -!- Iln _I- 18) - v (7n2 + 17n -!- 18)] - (L, - L1) n [(2n* + 

+ lln2 + 23n + 6) - v (7rS + 17n + M)]} &a $- 1;s {(Kx -i- K1) [(W $ 12n3 + 

C 17d + lln $6) - v (5n3 {- 20d + 17n + S)] - (Lz -I-- L1) n [(3n4 + 1 In3 + 13n3 $ 

+15n$-6)-v(5n3+20nZ+17n+6)]}~*-j--...> 

1 (4.7) 

As = 2 (2n + 1) ro*+l <{(Kz - Kl) (a t- v) $- (La - LI) (n L 1) (1 f- v); e + 

+ wh+ Kl) [W - 1) - v (n -22)]-(L.+L1)(n+l)[(na-3)-j-v(n-2)]}e2+ 

+ l/a WG - KI) [(5ns + 7n2 + iOn - 10) -t- v (7n2 - 3n + S)] + (Lz - 4) (n -_I- 1) [(2n* - 

- 5n’ + 7n + 8) + v (79 - 3n + 8)]) Es i- Ii6 ((Kz + YI) [(- 2n4 i- 4n3 + 7na + 

+ 5n - 2) + v (- 5na + 5n2 + 8n + 4)] - (Ls + L1) (n + 1) [ (3nQ f n3 -.- ?na -- 

- 1On - 4) + v (5n3 - 5n* - 8n - 4)]} 9 + . , .> (4.8) 
1 

A3=8(n-l)(2n-l)(2n+l)‘~ -nf4 <{(Yz - YI) [ (n3 + nT - n -+ 1) - v(n” - 1) - 2vy+ 

+ (tz - L3) (n + 1) I(na - n + 2) + v (n” - n) - .Wl) e + {(Kz + Kl) [ (2n3 + 3n2 - 1) - 
-v(na~3n2-~-3)-2v2(n+1)]-((LZ+L~)(n+1)[(n4+n3-3n2-fl-2)- 

- v (n* -+ 2n2 - 3n) + 219 (n + I)]] 9 $ I/a ((Kg - K1) [(5n5 + 20n4 + 16nS -+ 

+ 6nZ + 21n - 20) - v (7n* + 25rP + 5n2 - 25n - 12) - 2v2 (7n2 -j- 21n 2 4)] - 

- (E, - L1) (n + 1) [(2ns + 5n4 - 4na - 13n2 - 46n J- 8) - v (7na + 18n3 - 13n2 - 

- 12n) + 2v2(7n2 _I- 21n - 4)]} c3-+ l/6 {(KS + K1) [(2fle -+ iGn5 + 43n4 + 

+ 25na - 13n2 - 572 + 4) - v (5n5 +- 28n4 f 30n3 - 40n2 - Xin + 12) - 

- 2v2 (5n* j- 22n2 + 13n - 4)] - (L -t LI) (n -+ 1) [(3ne j- 12n” - 8n4 - 

- 42nn - 15n2 - 30n _t 8) - Y (5n5 + 23n* + 7n3 - 47n2 + 22n) + 

+ 2v2 (5n3 -f 22n2 j- 1:ln - 4)]} e4 -I- . . .> (4.9) 
1 

A4=-8(n + 2)(2n -t 1) (2n + 3) ‘O Tt+3 <{(Kz - KI) [(- n3 - 2n2 + 2) -v (n2 + 2n)- 

- 2v2] - (& - Ll) n [(n2 + 3n + 4)+: v (p2 -$3n tr_ 2)d 2v2]} e - ((K? + K1) [(an3 + 

+ 3n2j - v (9 - 4n) - 2Y2n] - (I.2 + L1) n [(n4 -I- 3n3 - 4n - 4) -j- Y (ns + n2 - 

- 4n - 4) - 2v%z]} e2 - */6 ((KS - KT) [(Fin5 + 5n4 - 14nS - 28n2 + 2n + 

+ 36) + v (7n4 + 3n3 - 28n2 - 12n) + 2v2 (7n2 - 7n - 18)1- (h, - 41) n I(-- 2n5 - 5n* + 

+ 4nJ + 9n2 + 42n + 48) - v (7n4 + 10n3 - 25n2 - 4On - 12) + 2v2 (7n” - 7n - 

- 18)]} es + I/B {(Kz + KI) [(2ns - 4n5 - 7n4 -t 27n3 + 40n2 + 8n) f 

+ y (5n5 - 3n4 - 32n3 + 12n2 + 48n) + 2v2 (5n3 - 7n2 - 16n)] + 

+ (LJ + b) n [(3n6 + Gns - 23n4 - 50n3 - i2n2 + 52n + 48) + 

+ v (5n5 + 2n4 - 35ns - 20n2 + 60n + 48) - 2va (5n3 - 7n2 - 16n)]j e4 + . . .) (4.10) 

subatitutlng (4.5) Into (4.3) and (4.41, we find 

(n3-nn2)+4v(n+1) r”+lA, + tn2 + h) - 4vn 

4 (1 - v) (2n + 3) 4 (1 - Y) (2n - 1) 
F-%~+ 

+ &‘-‘A3 - (n + 1) F++‘) A,> P, (4.11) 
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Expressiona (4.11) and (4.12) can be used for constructing approximate 

theories intended for equilibrating the atresees on rp , These expressions 

show that Ur and X0 could be obtained by satisfying the following system 

of ordinary differential equations 
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In this way an approximate theory can be obtaafned that has an error of 

arbftrary degree of smallness with re..rect to E . If UT and I.& are to be 

considered at points not on the middle surface, but in an arbitrary layer, 

the corresponding value of r must be substituted Into Formulas (4.11) and 

(4.12) to yield new equations for the approximate determination of Ur and 

%i' It ia not difficult to obtain the equations for arbitrary characteris- 

tica of the state of stress in the shell. 

5, Here we will oonsider some of the existing approxlm8te theories of 
designing spherical shells corresponding to the results obtained above. In 
ths first place we will e e 

“B”i” 
the boundary effects, As an example we will 

analyze the Vlasov theory 63, which in the case of flexure gives Equation 

i 
(O”f 1)’ +W-zVZJRz JL& [v’_-d.o_!!Yj (5.1) 

where h is the thickness of the shell. Equation (5.1) can be put in the 
fOllll 

(Yy - ,UL?) (a’ - ,u2’) &t G=c 0 

where 
(.5.2) 

J-b= - 
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Asymptotic Integration of Equation (5.2) ahow ua that Its solution has 
the form 

n-x 
71'=csp m-l (tinhcr) Y i + ~,fzqsh3 + 

VT 

+ __!- L-2 m-1 (aiohti)(cL~~ + 2)-(Y +a +&+).I I/r+. * .} 
8a_1 (5.4) 

By oomparlaon of the results we see th8t the Vl8aov theory, a8 lb to be 
expected, also give8 an error term of order yt in the expansion of the 
boundary effect. Without going into detaila, we point out that the aa!ne 
conclusion oan be drawn ooncerning 811 Imown teohnioal theories bawd on the 
Klrohhoff hypotheslr. Now let UI turn to the uulprlr of the aacumoy of 
the technical theories when they are regarded aa a 116ana of equilibrating 
the stresses on the spherical part of the boundary. 

In the Vlasov theory, the equationa for the determination of u,. and ud 
are 

II& ds 
haax+ +3(,_+), 1 1 id a -&+ 1)' ba&- + 2)e’+...}u,= 

=$ (i+v)0da-$ 
(1 

L+@a$+i-v)K}$- 

1 
*/ @ - l/aWad,,ieorda-p L 83 

) D P, 

Comparison of these relations with the exaot expanalone (4.13) and (4~14) 
shows that only the first terms agree. 

6. Wow let us consider In detail the question of complete equilibrating 
the stresses on the trsnsverse edges rl . To begin with, we will assume 

that the middle surface Is a sphere with one circular cutout (Flg.3). Let 

the traction on the edge a - aI be 

which satlsfy the equllibrlum condition 

b 

SC +f~(+l-lha 1 rdr = 0 
a (6.2) 

Making use of Lagrange's principle of virtual displacements, the solution 

Is found In the form 
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2 

Ur= 2 

k=l 
a 

u, = z 
k=l 

2 

zrcr = YJ 
k=l 

2 

6, = 2 
k=l 

i=l 

Aku,k(o) + g 
i=l 

&rak(“) + ; 
i=l 

Ak&-k(0) + $ 
i.E.l 

(tj.2) 

where &k(‘), &kc’), &kc’), 6,k(‘), C&k (‘)v _.%k@) are given by Formulae (3.7) 

to (3.121, Uj.i(‘), U,iccj, Qri(‘), Zl.,i”)* Q*i(‘)p a,i(‘) by Formulae (3.16) to 

(j.i?l), and ,uri*(C), u,~*@), 7r(,i*(‘), a,c*(C), Q*(C), a,i*(‘) by Formulae (3.22) 

to (3.27). 

As generalized parameters we use the coefflolente Al,, B,, D, Since the 

homogeneous solutions exactly satisfy the equilibrium condltlona and the 

boundary condltione on r. , the principle of virtual dieplacements aseumee 

the following form 

i (&ua + T,,~u,) r dr = j if1 (F) 6u, + f2 (7) 84 r dr CW 

a OL 
We will express the variation of the dieplacements by meena of bA&, bR, 

and iiD,. Carrying odt. the titegratlone end setting the coefflclenta of 

Independent varlatlona equal to zero, we obtain the following system: 

03 co 

x l?ljkAk f 2 njiBi + 2 PjiDi = Cj 
h-=1 i=l i=l 

(i = I, 2) 6.5) 

2 r.fkAk + 
k=r 

$ gliBi + i h/iDi = dt 
i=l t=1 

i alkAk + $ biiBi + i ql&i =Sl 

k=l i=l i=l 

(1= 1, 2, 3, . . .oo) (G.6) 

(I = 1, 2, 3, . . . 00) VW 
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d, = ’ if1 (I”) uat(c) + fi (r) uj$f] r dr, s $1 = * [fl (r) GIN* + fa (r) w*(‘)l rdr I 
!I n 

In system (6,5) to 16.71, Equation (6.5) corresponds to &It, 16.51 to 

.!i& aad (6.7) to ap, . After solving this systam for all the coefi'icients 

At, i9, and b, we have the solution of the problem, 

7. It OM be proved that system (6.5) to (6.7) is porritlve defInlte in 

the energy space H, and thus Is always solvable for ZZhysiOally reasonable 

restrictions on the functions Yz and J'*. He will atudy the structure of 

this system when the thitkntes parareetar v tends to zero. 

First of all we will clarify the asautnption oonatrning the external load- 

ing. Since the stresses Ua and Trs,.corr%rponding to the roots of the 

second group have differant orders with reepeot to y , n~%ly Ua -1 /VT 

and era -$ , it Is ess%nti&l that the order of j.(F) exoeeds that of f,(r) 

by & factor Jy . This c86e will be examlned in the following. 

Here we introduce the notation 

1 1 

s a flk3 u,p dLg = Fkr(, s ’ fa 15) urk(o) dS = f-k 
-1 -1 

(7.1) 

1 1 

S 
fi (5) u,I*@) dS = CT, 

S 
Ia (5) upi*@) d5 = Qn 

-1 -1 
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Let UI repreeent all these characteristics in the form of power series In 

V In view of the aaeumptlon made about the external loading, we have 

Expmsione Fh. = I;l;o + iJ,l l/r -j- b”ii:T +. . . to F,;, Ni, Pi (7.2) 

Gk = G,, vr + G,;Jy +. . . to c,, Mj, Qi (7.3) 

When a - a1 , the quantltiea m(a) and &(a)/& can be decomposed In 

the following way: m(al) - 1 for the second and thlrd group, 

for the roots of the second group 

dm 2 a-1 
2;1 

= ~._ - 
1=a, soshzt, Jr 

T 
i + +ainhdl- 

for the roots of the third group 

dm 1 m- 1 
i sinha - d; a=a, = -‘--- __ i + 2 

~~a1 T 

1 --- 
8m_, 

i [(I -8rn_,nz,) - (d2a, + 1 +~~c+oBc~~)] r 

The coefficienta of the system then hare the form 

/ik = &o + A-ih.1 f/r+ Akz?, + * * * 

~i-=L3i~+BiiT/*(+Biar-i-“’ 

Di = Die + Dj,, VT + DiZT +’ * ’ 

f. 

. * (7.4) 

. . (7.5) 

(W 

Subetituting (7.4), (‘7.5) end (7.6) into 6.5) to (6.7) and taking account 

of (6.8), we obtain 
2 

U 
‘6G 

kEl (I- w 
a p%l (1 - Y2) (1 - Y) (aJq2 x 

A It2_l(j) - (dk))l I/?(Ako + Ak, VT+. . .,} + 

+ z1 { - (1 :;,I2 a v- I(1 - v”) vsinbal x 

i 
k=l 



Equatsng to zero the coefficients of the same powers of y , we obtazrx 

& = 0, Dro = 0, Ah* = 0, &I = 0, Q, = 0, Akl #O, n,, #O, D&#O 

It 1s clear that the coefficients AR,, Btl and Dl, can be determined 
independent of each other, i.e. All, (k = 1, 2) can be found frQll two equa- 
tions, and Bta Dr, from an Infinite system 

(i= 1, 2) 
2 

16G JLF~~ (1 -$)(I -v) (a_,{j)j2 [a_,(j) - &k)]} Akr = Fi -j- Gj 



W Continuing the process of asymptotic dc~omposltlon of the ayetern, we 

oan oaloulate Ak2, B13, D13 etc. 

It id iPlport8nt to note that the matrices of the Infinite system ior Btz, 

urd ~12_,8re Identical with the matrices obtained ln the problems of flexure 

and ttmlOn of thick plates. The inversion of these flexurt matrioes has 

ken c&rrled out by the method of reduction, and the coefflcltnte Btz, DI, 
have been found to the necessary dtfirtt of accuracy. 

8. Under the above assumptions concerning the external loading, the cotf- 

flolentr J?~ and D, have order of smallness Jv times greater than A, . 
The aCtUi1 CxpanaionI! of the coefficients have the forms 

A/c = Akl I/?+ &d’ + . . . 7 .Bi zzz Rflr + Bi,r”‘z + . w a 7 

Di = Dizr + Di,f’i + e w . 
Tht general solution of the problem of determlnlng the state0 of etress 

and strain in a lrhell can be found by mean8 of superposition of the BOlUtiOnS 

oorrerponding to the different groups of roota 

1 2 
ur = 1 k_1 -ix 2 (cz_~(~))~ (1 - Y) exp [ a-l(k) --qy-- + . ..]Akl+ 

] exp [% + . . .] &I -v-t+ 

X BiP exp [3$-I_. . .]y+fJ <[(1_-2V)ti+-~&]dhS + 
i=l 

+ c~inb8iti6ic > Di2 exp [~+...]r+...} (8.2) 

12 (1 - V”j c&r eP 
a_,(k) 

I/r +...I+ 
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In Formulas (8.1) to (8.4), the first term of the right-hand aldee corre- 

spond to the teohnlCa1 theory of shells, The subsequent term are 8UpPleUIent- 

ary to the solution of the Klrchhori theory. On the part of the boundary 

where (r - a1 , the supplementary terma in ge have exactly the mat ordtr 
ae those In the ttchnlcal theory. Mortover, the supplementary terma in the 

stress T,= become of basic lnportance aa y - 0 . 

9. All the preceding rtaults refer to shells with a bphtrlcal middle 
surface and one cutout. Whtn the middle surfaot lb still spherlcal but there 

art two cutout8 at the poles, the general solution (6.3) mat be supplementad 
with the solution for the tension of a shell by two oonotntrattd forcea, 

which was mentioned at the end of Section 3. However, tht &ate of strtse 
In the vicinity of each cutout can be found as descrlbtd above. 
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